direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C5×C2≀C22, 2+ 1+4⋊2C10, C23⋊(C5×D4), (C2×C20)⋊4D4, C23⋊C4⋊3C10, C24⋊2(C2×C10), (C22×C10)⋊1D4, C22≀C2⋊1C10, (C23×C10)⋊1C22, C22.18(D4×C10), C10.104C22≀C2, C23.3(C22×C10), (C5×2+ 1+4)⋊8C2, (D4×C10).183C22, (C22×C10).82C23, (C2×C4)⋊(C5×D4), (C5×C23⋊C4)⋊9C2, C22⋊C4⋊1(C2×C10), (C2×D4).8(C2×C10), (C5×C22≀C2)⋊11C2, C2.18(C5×C22≀C2), (C2×C10).413(C2×D4), (C5×C22⋊C4)⋊36C22, SmallGroup(320,958)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C2≀C22
G = < a,b,c,d,e,f | a5=b2=c2=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=fbf=bcd, ece-1=cd=dc, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 450 in 198 conjugacy classes, 54 normal (12 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C10, C10, C22⋊C4, C22⋊C4, C2×D4, C2×D4, C4○D4, C24, C20, C2×C10, C2×C10, C23⋊C4, C22≀C2, 2+ 1+4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, C22×C10, C22×C10, C2≀C22, C5×C22⋊C4, C5×C22⋊C4, D4×C10, D4×C10, C5×C4○D4, C23×C10, C5×C23⋊C4, C5×C22≀C2, C5×2+ 1+4, C5×C2≀C22
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C2×C10, C22≀C2, C5×D4, C22×C10, C2≀C22, D4×C10, C5×C22≀C2, C5×C2≀C22
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 21)(7 22)(8 23)(9 24)(10 25)(11 31)(12 32)(13 33)(14 34)(15 35)(16 26)(17 27)(18 28)(19 29)(20 30)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 11)(7 12)(8 13)(9 14)(10 15)(16 36)(17 37)(18 38)(19 39)(20 40)(21 31)(22 32)(23 33)(24 34)(25 35)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 36)(7 37)(8 38)(9 39)(10 40)(11 16)(12 17)(13 18)(14 19)(15 20)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 36 26 11)(2 37 27 12)(3 38 28 13)(4 39 29 14)(5 40 30 15)(6 31 16 21)(7 32 17 22)(8 33 18 23)(9 34 19 24)(10 35 20 25)
(6 16)(7 17)(8 18)(9 19)(10 20)(11 36)(12 37)(13 38)(14 39)(15 40)
G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,36)(2,37)(3,38)(4,39)(5,40)(6,21)(7,22)(8,23)(9,24)(10,25)(11,31)(12,32)(13,33)(14,34)(15,35)(16,26)(17,27)(18,28)(19,29)(20,30), (1,26)(2,27)(3,28)(4,29)(5,30)(6,11)(7,12)(8,13)(9,14)(10,15)(16,36)(17,37)(18,38)(19,39)(20,40)(21,31)(22,32)(23,33)(24,34)(25,35), (1,21)(2,22)(3,23)(4,24)(5,25)(6,36)(7,37)(8,38)(9,39)(10,40)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35), (1,36,26,11)(2,37,27,12)(3,38,28,13)(4,39,29,14)(5,40,30,15)(6,31,16,21)(7,32,17,22)(8,33,18,23)(9,34,19,24)(10,35,20,25), (6,16)(7,17)(8,18)(9,19)(10,20)(11,36)(12,37)(13,38)(14,39)(15,40)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,36)(2,37)(3,38)(4,39)(5,40)(6,21)(7,22)(8,23)(9,24)(10,25)(11,31)(12,32)(13,33)(14,34)(15,35)(16,26)(17,27)(18,28)(19,29)(20,30), (1,26)(2,27)(3,28)(4,29)(5,30)(6,11)(7,12)(8,13)(9,14)(10,15)(16,36)(17,37)(18,38)(19,39)(20,40)(21,31)(22,32)(23,33)(24,34)(25,35), (1,21)(2,22)(3,23)(4,24)(5,25)(6,36)(7,37)(8,38)(9,39)(10,40)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35), (1,36,26,11)(2,37,27,12)(3,38,28,13)(4,39,29,14)(5,40,30,15)(6,31,16,21)(7,32,17,22)(8,33,18,23)(9,34,19,24)(10,35,20,25), (6,16)(7,17)(8,18)(9,19)(10,20)(11,36)(12,37)(13,38)(14,39)(15,40) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,21),(7,22),(8,23),(9,24),(10,25),(11,31),(12,32),(13,33),(14,34),(15,35),(16,26),(17,27),(18,28),(19,29),(20,30)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,11),(7,12),(8,13),(9,14),(10,15),(16,36),(17,37),(18,38),(19,39),(20,40),(21,31),(22,32),(23,33),(24,34),(25,35)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,36),(7,37),(8,38),(9,39),(10,40),(11,16),(12,17),(13,18),(14,19),(15,20),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,36,26,11),(2,37,27,12),(3,38,28,13),(4,39,29,14),(5,40,30,15),(6,31,16,21),(7,32,17,22),(8,33,18,23),(9,34,19,24),(10,35,20,25)], [(6,16),(7,17),(8,18),(9,19),(10,20),(11,36),(12,37),(13,38),(14,39),(15,40)]])
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | ··· | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 10E | ··· | 10P | 10Q | ··· | 10AJ | 20A | ··· | 20L | 20M | ··· | 20X |
order | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | D4 | D4 | C5×D4 | C5×D4 | C2≀C22 | C5×C2≀C22 |
kernel | C5×C2≀C22 | C5×C23⋊C4 | C5×C22≀C2 | C5×2+ 1+4 | C2≀C22 | C23⋊C4 | C22≀C2 | 2+ 1+4 | C2×C20 | C22×C10 | C2×C4 | C23 | C5 | C1 |
# reps | 1 | 3 | 3 | 1 | 4 | 12 | 12 | 4 | 3 | 3 | 12 | 12 | 2 | 8 |
Matrix representation of C5×C2≀C22 ►in GL6(𝔽41)
10 | 0 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(41))| [10,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,40,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C5×C2≀C22 in GAP, Magma, Sage, TeX
C_5\times C_2\wr C_2^2
% in TeX
G:=Group("C5xC2wrC2^2");
// GroupNames label
G:=SmallGroup(320,958);
// by ID
G=gap.SmallGroup(320,958);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,1766,1768,5052]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=f*b*f=b*c*d,e*c*e^-1=c*d=d*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations